PhD Thesis
Thesis Version 1
NLP Researcher in IITs
https://docs.google.com/document/d/1HSNaIKeOvnP-IInwU6BBrHasGzVaFpvahlwXoA82wXQ
Thesis Summary(As of 5th-March 2022)
https://docs.google.com/document/d/19t2SKkSFi9aeKcoAgkGgeACmc2BAV0lV/edit#
Google Doc : https://docs.google.com/document/d/160-2YyBr4ySwOJmqmposeAf14kauJQxw/edit
ACKNOWLEDGEMENTS i
ABSTRACT iii
DECLARATION v
LIST OF TABLES x
LIST OF FIGURES xii
ABBREVIATIONS xiv
SYMBOLS/ NOTATIONS xvii
- Table of Contents
Google Doc: https://docs.google.com/document/d/14E8idaXi4IvogBAksynGp-UIyMwJ9-x8/edit
Chapter 1(Introduction)
Google Doc: https://docs.google.com/document/d/1wEiJ604IvPsaKvilTxei7wYQmE1dOE_7/edit
subtopic
subtopic
Chapter 2(Literature Review)
Google Doc: https://docs.google.com/document/d/10tP-xjBArKgMEwYiLWlyBXkJn41_gsph/edit
sub topic
sub topic
sub topic
Chapter 3 (Developing Tourist Forecasting System (TFS) )
Google Doc: https://docs.google.com/document/d/1dGnQaE0sQgtN0nPc9Dlm_gB5xC-xMpHR/edit
sub topic
sub topic
sub topic
Chapter 4 (Developing Tourist Spot Recommendation System (TSRS) )
Google Doc: https://docs.google.com/document/d/1gjy0vm-9qoH0KLztuDsEWvj_oa5KMZJB/edit
4.1 Introduction
4.2 Overview of Existing Approaches
4.2.1 Sentiment Analysis
4.2.2 Support Vector Machines (SVM)
4.2.3 Bayesian Network
4.2.4 Outlier detection-based classification
4.3 Proposed System
4.3.1 Data collection
4.3.2 Pattern Classification
4.3.3 Proposed algorithm
4.4 Experimental Results and Discussion
4.4.1 Energy consumption data collection and system setup
4.4.2 Data classification using LM-based neural network classifier
4.4.3 Results and verification
4.4.4 True positive and false positive test results
4.4.5. Comparison of the proposed approach with existing methods
4.5 Summary
Chapter 5 (Developing Tourist Path Prediction System (TPPS) )
Gooogle doc: https://docs.google.com/document/d/1I0VGTeIdUPcsQBOAoMZCz66yEBuHIet1/edit
Approach
5.1 Introduction
5.2 Proposed System
5.2.1 Data Collection and Preprocessing
5.2.2 Linear and Non-linear Regression Model
5.2.3 Back-propagation Artificial Neural Network
5.3 Experimental Results and Discussion
5.3.1 Prediction of Tourist Forecasting using Multiple Regression Analysis
5.3.2 Prediction of Tourist Forecasting using LMBP-ANN
5.4 Comparison of Regression and LMBP-ANN Model
5.5 Summary
Chapter 6 (Developing Tourist Observation System (TOS) )
Google Doc: https://docs.google.com/document/d/19QY0xccf2RKOmrTVeTINfNZYyR73e0Mo/edit
6.1 Introduction
6.2 Overview of Existing Prediction Methods
6.3 Design of Prediction Models
6.4 Proposed Approach for Cement Strength Prediction
6.5 Experimental Results and Discussion
6.5.1 Performance Indexes
6.5.2 Computation of Hidden Nodes
6.5.3 Performance Analysis Comparison of Existing results and Proposed Approach results.
6.5.4 Performance Analysis of Existing Methods
6.5.5 Performance Analysis of Proposed Approach
6.5.6 Training Performance
6.6 Comparison of Computational Time for Existing and Proposed Approach
6.7 Summary
Chapter 7 (Conclusion, Contributions, Limitations, and Future Scope)
Google Doc: https://docs.google.com/document/d/1Bzk54m0iL9Pf4vuSMbW42R0GVSBV2KTP/edit
7.1 Conclusion
7.2 Contributions of the Present Research Work
7.3 Limitations
7.4 Directions for Future Works
References
Google doc: https://docs.google.com/document/d/1wJ_buYB1VsmWz1_Uvpw3ducDq6YSzlly/edit
Appendix
Google Doc: https://docs.google.com/document/d/14ep23cRUaDKTsbjf8LWTq4Ki220T7n7y/edit
Appendix A: Experimental Setup
Appendix B: Python3 Functions and Available Toolboxes
Appendix C: Algorithms
Appendix D: Data Classification Performance Measures
Appendix E: The linear and non-linear regression model
LIST OF PUBLICATIONS AND PRESENTATIONS
BIOGRAPHY OF THE CANDIDATE
BIOGRAPHY OF THE SUPERVISOR